If sin A+ cos A = root 2 cos A then find value of cot A
Answers
Answered by
36
(sin A + cos A )/cos A = ✓2
=> sin A/cos A + cos A / cos A = ✓2
=> tan A + 1 = ✓2
=> tan A= ✓2-1
=> cot A = 1/✓2-1
=> cot A = 1/✓2-1 * ✓2+1/✓2+1
=> cot A = ✓2+1/(✓2)²-1²
=> cot A = ✓2+1/2-1
=> cot A = ✓2+1
=> sin A/cos A + cos A / cos A = ✓2
=> tan A + 1 = ✓2
=> tan A= ✓2-1
=> cot A = 1/✓2-1
=> cot A = 1/✓2-1 * ✓2+1/✓2+1
=> cot A = ✓2+1/(✓2)²-1²
=> cot A = ✓2+1/2-1
=> cot A = ✓2+1
Rachel3442:
Thanks
Answered by
3
Answer:
cotA = (√2 + 1)
Step-by-step explanation:
Given: sinA + cosA = √2cosA
dividing by cosA in both side
sinA/cosA + cosA/cosA = √2cosA/cosA
tanA + 1 = √2
tanA = √2 - 1
cotA = 1/√2 - 1
cotA = 1/(√2 - 1) × (√2 + 1)/(√2 + 1)
cotA = (√2 + 1)/(2 - 1)
cotA = (√2 + 1)
thanks,
#SPJ3
Similar questions