If sin a + cos a = root (2) , then find value of sin2a
Answers
Answered by
13
Hey there !!!!!
sinA+cosA= √2-----Equation 1
Dividing equation 1 with √2 on both sides
sinA/√2+cosA/√2 =√2/√2----Equation 2
We know that sin45=1/√2 and cos45=1/√2
So, Equation 2 changes to
sinAcos45+cosAsin45=1-----Equation 3
LHS of equation 3 is of the form sinXcosY+cosXsinY=sin(X+Y)
So, X=A Y=45
sin(A+45)=1
But sin90=1
SO,
sin(A+45)=sin90
A+45=90
A=90-45=45
sin2A=sin2*45=sin90 =1.
________________________________________________
Hope this helped you...........
sinA+cosA= √2-----Equation 1
Dividing equation 1 with √2 on both sides
sinA/√2+cosA/√2 =√2/√2----Equation 2
We know that sin45=1/√2 and cos45=1/√2
So, Equation 2 changes to
sinAcos45+cosAsin45=1-----Equation 3
LHS of equation 3 is of the form sinXcosY+cosXsinY=sin(X+Y)
So, X=A Y=45
sin(A+45)=1
But sin90=1
SO,
sin(A+45)=sin90
A+45=90
A=90-45=45
sin2A=sin2*45=sin90 =1.
________________________________________________
Hope this helped you...........
Similar questions