if Sin A = M / N find tan A + 4 / 4 cot A + 1
Answers
Answered by
3
Hi baby
Step-by-step explanation:
sinθ=m/n
∴, cosθ=√1-sin²θ=√1-m²/n²=√(n²-m²)/n²=√(n²-m²)/n
∴,tanθ=sinθ/cosθ=m/√(n²-m²)
cotθ=1/tanθ=√(n²-m²)/m
∴, (tanθ+4)/(4cotθ+1)
=[m/√(n²-m²)+4]/[4√(n²-m²)/m+1]
=[{m+4√(n²-m²)}/√(n²-m²)]/[{4√(n²-m²)+m}/m]
={m+4√(n²-m²)}/√(n²-m²)×m/{m+4√(n²-m²}
=m/√(n²-m²)
Similar questions