If Sin A + Sin²A = 1, Prove that Cos²A + Cos⁴A = 1
Answers
Answered by
3
Answer:
Step-by-step explanation:
Given , sinA + sin²A = 1
To prove , cos²A + cos⁴A = 1
Now ,
sinA + sin²A = 1
=> sinA = 1 - sin²A
=> sinA = cos²A [ °•° sin²∅ + cos²∅ = 1 ]
=> ( sinA )² = ( cos²A )² [ • squaring both sides ]
=> sin²A = cos⁴A
=> 1 - cos²A = cos⁴A [ °•° sin²∅ + cos²∅ = 1 ]
=> cos⁴A + cos²A = 1 [ Hence Proved ]
Answered by
1
Step-by-step explanation:
Sin A + Sin^2 A =1
Sin A = 1 - Sin^2 A
Sin A = Cos^2 A. [Sin^2 A+ Cos^2 A =1]
Now,
Cos^2 A +Cos^4 A = 1
From LHS
Cos^2 A + (cos^2 A)^2
= Cos^2 A + (Sin A)^2
= Cos^2 A + Sin^2 A
=1. [Sin^2 A + Cos^2 A = 1]
= RHS
since, LHS = RHS
Hence , proved.
Similar questions