Math, asked by Anonymous, 1 year ago

if sin alpha + sin beta=a and cos alpha+ cos beta = b, then prove that 1) sin(alpha+beta)=2ab/a^2 + b^2.


JinKazama1: Please recheck your question
Anonymous: question is absolutely correct sir

Answers

Answered by JinKazama1
75
Understanding:
1) sinα + sinβ = 2sin((α+β)/2) cos((α-β)/2)
2) cosα+cosβ = 2cos((α+β)/2)cos((α-β)/2)

Steps:
1) Convert a and b into sum and difference of angles by using above identity.
2)Mulitply a with b.
3) Add Square a with square b.
4)Divide 2) and 3).
Attachments:
Answered by visala21sl
0

Answer:

  \frac{2ab}{a^{2}+b^{2}  } = sin(α+β)

Step-by-step explanation:

We have to prove that sin(α+β) = \frac{2ab}{a^{2}+b^{2}  }

'a' = sinα + sinβ

  a = 2 sin(\frac{\alpha +\beta }{2}) cos(\frac{\alpha -\beta }{2})

'b' = cosα+cosβ

  b    = 2 cos(\frac{\alpha +\beta }{2}) cos(\frac{\alpha -\beta }{2})

'a b' =  4 sin(\frac{\alpha +\beta }{2}) cos(\frac{\alpha +\beta }{2}) cos(\frac{\alpha -\beta }{2})

ab    = 2 sin(\frac{\alpha +\beta }{2}) cos²(\frac{\alpha -\beta }{2})

a² + b²= 4 cos²(\frac{\alpha -\beta }{2})

\frac{2ab}{a^{2}+b^{2}  } = sin(α+β)

Hence proved.

Similar questions