if sin alpha + sin beta=a and cos alpha+ cos beta = b, then prove that 1) sin(alpha+beta)=2ab/a^2 + b^2.
JinKazama1:
Please recheck your question
Answers
Answered by
75
Understanding:
1) sinα + sinβ = 2sin((α+β)/2) cos((α-β)/2)
2) cosα+cosβ = 2cos((α+β)/2)cos((α-β)/2)
Steps:
1) Convert a and b into sum and difference of angles by using above identity.
2)Mulitply a with b.
3) Add Square a with square b.
4)Divide 2) and 3).
1) sinα + sinβ = 2sin((α+β)/2) cos((α-β)/2)
2) cosα+cosβ = 2cos((α+β)/2)cos((α-β)/2)
Steps:
1) Convert a and b into sum and difference of angles by using above identity.
2)Mulitply a with b.
3) Add Square a with square b.
4)Divide 2) and 3).
Attachments:
Answered by
0
Answer:
= sin(α+β)
Step-by-step explanation:
We have to prove that sin(α+β) =
'a' = sinα + sinβ
a = 2 sin() cos()
'b' = cosα+cosβ
b = 2 cos() cos()
'a b' = 4 sin() cos() cos()
ab = 2 sin() cos²()
a² + b²= 4 cos²()
∴ = sin(α+β)
Hence proved.
Similar questions