if sin alpha sin beta – cos alpha cos beta +1 =0 then prove that cot alpha tan beta = –1
Answers
Given --->
Sinα Sinβ - Cosα Cosβ + 1 = 0
To prove---> Cotα tanβ = -1
Proof ---> ATQ,
Sinα Sinβ - Cosα Cosβ + 1 = 0
Changing sign of whole equation , we get
=> Cosα Cosβ - Sinα Sinβ - 1 = 0
=> ( Cosα Cosβ - Sinα Sinβ ) = 1
We have a formula,
Cos ( x + y ) = Cosx Cosy - Sinx Siny , applying it here we get,
=> Cos ( α + β ) = Cos0°
=> α + β = 0°
=> β = - α
Now taking ,
LHS = Cotα tanβ
Putting β = - α , in it , we get,
= Cotα tan ( -α )
We know that tan ( -θ ) = -tanθ , applying it here we get,
= Cotα ( - tanα )
We know that , tanθ = 1 / Cotθ , applying it here , we get,
= - Cotα × ( 1 / Cotα )
= - 1 = RHS
Answer:
Step-by-step explanation:
Given :
sinαsinβ−cosαcosβ+1=0
⇒cos(α+β)=−1
α+β=−1
α+β=(2n+1)π
1+cotαtanβ=1+cosαsinα.sinβcosβ
⇒sinαsinβ+cosαsinβsinαcosβ
⇒sin(α+β)sinαcosβ
⇒sin((2n+1)π)sinαcosβ
⇒0
1+cotα+tanβ=0
cotα+tanβ=−1
^_^