if sin B= 3sin(2A+B) prove that 2tanA+ tan(A+B)=0
Answers
Answered by
15
Answer:
2tanA+ tan(A+B)=0
Step-by-step explanation:
Given
sin B= 3sin(2A+B)
B = A + B - A
& 2A + B = A + B + A
=> Sin(A + B - A ) = 3 Sin(A + B + A)
Using
Sin(C + D) = SinCCosD + CosCSinD
& SIn(C - D) = SinCCosD - CosCSinD
=> Sin(A+B)CosA - Cos(A+B)SinA = 3 (Sin(A+B)CosA + Cos(A+B)CosA)
=> 2 Sin(A+B)CosA + 4Cos(A+B)SinA = 0
Diving both side 2CosACos(A+ B)
=> 2 Sin(A+B)CosA/2CosACos(A+ B) + 4Cos(A+B)SinA /2CosACos(A+ B) = 0
=> Tan(A + B) + 2TanA = 0
=> 2tanA+ tan(A+B)=0
Answered by
5
Answer:
Step-by-step explanation:
Refer to the attachment given below ❤️
Mark as brainliest
Attachments:
Similar questions