Math, asked by varshavernekar, 9 months ago

If sin B = cos(2B - 30) where 2B is an acute angle therefore the value of B = ___

Give your answer with an example

Answers

Answered by raju1396830
5

Answer:

40

Step-by-step explanation:

  cos(90 - b)  =  cos(2b - 30)

90 - b = 2b - 30

120 = 3b

b = 40

Answered by umiko28
2

Answer:

your \: ans \\ hope \:it \: help \: yoy \\

Step-by-step explanation:

 \sin(b)  =  \cos(2b - 30)  \\  =  >  \sin(b)  =  \sin({90 - 2b + 30})  \\  =  > b = 90 - 2b + 30 \\  =  > 3b = 120 \\  =  > b =  \frac{120}{3}  \\  =  > b = 40 \\  \\  \sin(0) = 0 \\  \cos(0)  = 1 \\  \tan(0)  = 0 \\  \sin(30)  =   \frac{1}{2}  \\  \cos(30)  =  \frac{ \sqrt{3} }{2}  \\  \tan(30)  =  \frac{1}{ \sqrt{3} }  \\  \sin(45)  =  \frac{1}{ \sqrt{2} }  \\  \cos(45)  =  \frac{1}{ \sqrt{2} }  \\  \tan(45)  = 1 \\  \sin(60)  =  \frac{ \sqrt{3} }{2}  \\  \cos(60)  =  \frac{1}{2}  \\  \tan(60)  =  \sqrt{3}  \\   \sin(90)  = 1 \\  \cos(90)  = 0 \\  \tan(90)  =  \infty

pls follow me and mark as brainlist

Similar questions