If sin B + cos B = ,
THEN PROVE THAT :- tan B + cot B = 1
Answers
Answered by
4
Answer:
SinB + CosB =√3 (given)
Squaring on both sides :
Sin²B + Cos²B + 2.SinB.CosB = 3
1 + 2SinB.CosB = 3
(as Sin²B + Cos²B =1)
2.SinB.CosB = 2
SinB.CosB = 1 .... (1)
TanB = SinB/ CosB
CotB = CosB/ SinB
TanB + CotB = (sinB/cosB) +(cosB+sinB)
==> (sin²B + cos²B) /(sinB.cosB)
==> 1/sinB.cosB
===1/1 [from (1)]
Hence proved
Similar questions