Math, asked by shruthi67, 1 year ago

if sin beta is geometric mean between sin alpha and cos alpha , then cos2alpha

Answers

Answered by InesWalston
12

Answer-

\cos 2\alpha=\sqrt{1-4\sin^4 \beta}

Solution-

Given,

sin β is the geometric mean of sin α and cos α, i.e

\Rightarrow \sqrt{\sin \alpha \times \cos \alpha} =\sin \beta

\Rightarrow (\sqrt{\sin \alpha \times \cos \alpha})^2 =(\sin \beta)^2

\Rightarrow \sin \alpha \times \cos \alpha=\sin^2 \beta

\Rightarrow 2\times \sin \alpha \times \cos \alpha=2\times \sin^2 \beta

\Rightarrow \sin 2\alpha=2\sin^2 \beta

\Rightarrow (\sin 2\alpha)^2=(2\sin^2 \beta)^2

\Rightarrow \sin^2 2\alpha=4\sin^4 \beta

\Rightarrow 1-\sin^2 2\alpha=1-4\sin^4 \beta

\Rightarrow \cos^2 2\alpha=1-4\sin^4 \beta

\Rightarrow \sqrt{\cos^2 2\alpha} =\sqrt{1-4\sin^4 \beta}

\Rightarrow \cos 2\alpha=\sqrt{1-4\sin^4 \beta}


Similar questions