Math, asked by armanmahi3347, 1 year ago

If sin - cos = 0, then what is the value of the expression: (sin4 + cos4)

Answers

Answered by Anonymous
102

Correct Question :-

  • If sinA - cos A = 0 then Find the value of Sin⁴ A + Cos⁴ A ?

Solution :-

\qquad☀We are given equation is Sin A - Cos A = 0

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{Sin A = 0+ Cos A  }}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{Sin A =  Cos A }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ Sin A = 1\times  Cos A }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ Sin A }{Cos A }= 1 }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ Tan A =1 }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{Tan A = Tan 45° }}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{ A = 45° }}}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\blue{\qquad\leadsto\quad \pmb  {\mathfrak{Sin⁴ A + Cos⁴ A }}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ (Sin 45°) ⁴ + (Cos 45°)⁴ }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ (\dfrac{1}{√2})⁴ + (\dfrac{1}{√2})⁴ }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ (\dfrac{1}{4}) + (\dfrac{1}{4}) }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ (1+1)}{4} }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ 2}{4} }}\\

\blue{\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ 1}{2} }}}\\\\

  • The value of Sin⁴ A + Cos⁴ A for the given problem is 1/2.

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Answered by Anonymous
5

Answer: ½

Explanation:

Given that,

sinx - cosx = 0

=> sinx = cosx

=> sinx = sin(90° - x)

=> x = 45°.

Now,

sin⁴x + cos⁴x

= (sin45)⁴ + (cos45)⁴

= 2(1/√2)²

= 1/2.

ALITER:

We know,

sin⁴x + cos⁴x = 1 - 2sin²x cos²x

= 1 - 2(1/√2)⁴ = 1 - 2(1/4) = 1/2.

More:

Trigonometry is done using sign convention too. For clockwise it is -ve and for the opposite, it is taken +ve.

Even - odd trig functions:

ODD:

  • sin(- x) = - sinx
  • cosec(- x) = - cosecx
  • tan(-x) = - tanx
  • cot(-x) = - cotx.

EVEN:

  • cos(- x) = cosx
  • sec(- x) = secx.
Similar questions