Math, asked by satrunjay876, 1 year ago

If sin¢ + cos¢ = √2sin (90° - ¢) show that cot¢ = √2 + 1

Answers

Answered by Panzer786
9
Hiii friend !!!



Sin theta + Cos theta = ✓2 Sin (90-theta)



Sin theta + Cos theta = ✓2 Cos theta



Dividing both sides by Sin theta, we get ;


=> Sin theta / Sin theta + Cos theta /Sin theta = ✓2 Cos theta / Sin theta



=> 1 + Cot theta = ✓2 Cot theta [ Sin¢/Cos¢= Cot



=> (✓2-1) Cot theta = 1


=> Cot theta = 1/✓2-1



Rationalizing the denominator ✓2-1 we get,


=> Cot theta = 1/✓2-1×✓2+1/✓2+1


=> Cot theta = (✓2+1)/(✓2-1)(✓2+1)




=> Cot theta = (✓2+1)/(✓2)²-(1)²



=> Cot theta = (✓2+1)......PROVED.....




★ HOPE IT WILL HELP YOU ★
Answered by abhi569
3
sin¢ + cos¢ = √2 sin(90 - ¢)

We know,
 \sin(90 -  \alpha )  =  \cos( \alpha )

sin¢ + cos¢ = √2 cos¢

(sin¢ + cos¢)/cos¢ = √2

sin¢/cos¢ + cos¢/cos¢ = √2


We know,
 \frac{ \sin( \alpha ) }{ \cos( \alpha ) }   =  \tan( \alpha )

tan¢ + 1 = √2

tan¢ = √2 - 1


We know,
 \tan( \alpha )  =  \frac{1}{ \cot( \alpha ) }

 \frac{1}{ \tan( \alpha ) }  =   \frac{1}{ \sqrt{2} - 1 }

By rationalization,

 \frac{1}{ \tan( \alpha ) }  =  \frac{ \sqrt{2 }  + 1}{ {( \sqrt{2} )}^{2}  -   {1}^{2}  }   \\  \\  \\  \frac{1}{ \tan( \alpha ) }  =  \frac{ \sqrt{2}  + 1}{2 - 1}  \\  \\  \cot( \alpha )  =  \frac{ \sqrt{2}  + 1}{1}  \\  \\  \\  \cot( \alpha )  =  \sqrt{2}  + 1


Hence, proved.




I hope this will help you


(-:
Similar questions