If sin¢ + cos¢ = √2sin (90° - ¢) show that cot¢ = √2 + 1
Answers
Answered by
9
Hiii friend !!!
Sin theta + Cos theta = ✓2 Sin (90-theta)
Sin theta + Cos theta = ✓2 Cos theta
Dividing both sides by Sin theta, we get ;
=> Sin theta / Sin theta + Cos theta /Sin theta = ✓2 Cos theta / Sin theta
=> 1 + Cot theta = ✓2 Cot theta [ Sin¢/Cos¢= Cot
=> (✓2-1) Cot theta = 1
=> Cot theta = 1/✓2-1
Rationalizing the denominator ✓2-1 we get,
=> Cot theta = 1/✓2-1×✓2+1/✓2+1
=> Cot theta = (✓2+1)/(✓2-1)(✓2+1)
=> Cot theta = (✓2+1)/(✓2)²-(1)²
=> Cot theta = (✓2+1)......PROVED.....
★ HOPE IT WILL HELP YOU ★
Sin theta + Cos theta = ✓2 Sin (90-theta)
Sin theta + Cos theta = ✓2 Cos theta
Dividing both sides by Sin theta, we get ;
=> Sin theta / Sin theta + Cos theta /Sin theta = ✓2 Cos theta / Sin theta
=> 1 + Cot theta = ✓2 Cot theta [ Sin¢/Cos¢= Cot
=> (✓2-1) Cot theta = 1
=> Cot theta = 1/✓2-1
Rationalizing the denominator ✓2-1 we get,
=> Cot theta = 1/✓2-1×✓2+1/✓2+1
=> Cot theta = (✓2+1)/(✓2-1)(✓2+1)
=> Cot theta = (✓2+1)/(✓2)²-(1)²
=> Cot theta = (✓2+1)......PROVED.....
★ HOPE IT WILL HELP YOU ★
Answered by
3
sin¢ + cos¢ = √2 sin(90 - ¢)
We know,
sin¢ + cos¢ = √2 cos¢
(sin¢ + cos¢)/cos¢ = √2
sin¢/cos¢ + cos¢/cos¢ = √2
We know,
tan¢ + 1 = √2
tan¢ = √2 - 1
We know,
By rationalization,
Hence, proved.
I hope this will help you
(-:
We know,
sin¢ + cos¢ = √2 cos¢
(sin¢ + cos¢)/cos¢ = √2
sin¢/cos¢ + cos¢/cos¢ = √2
We know,
tan¢ + 1 = √2
tan¢ = √2 - 1
We know,
By rationalization,
Hence, proved.
I hope this will help you
(-:
Similar questions