Math, asked by prayagsharma26648, 10 months ago

If sin θ + cos θ = √3, then prove that tan θ + cot θ =1​

Answers

Answered by ashutoshsahni2
7

Step-by-step explanation

LHS=tan + cot

=sin/cos+cos/sin

=sin^2+cos^2/sin.cos

=1/sin.cos

we know,

cos=1/sin

so,

LHS=1

Hence,

LHS=RHS

Answered by lublana
3

Answer with Step-by-step explanation:

sin\theta+cos\theta=\sqrt 3

Taking LHS

tan\theta+cot\theta

\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}

By using formula

tan\theta=\frac{sin\theta}{cos\theta},cot\theta=\frac{cos\theta}{sin\theta}

\frac{sin^2\theta+cos^2\theta}{sin\theta cos\theta}

(sin\theta+cos\theta)^2=(\sqrt 3)^2

sin^2\theta+cos^2\theta+2sin\theta cos\theta=3

By using (a+b)^2=a^2+b^2+2ab

1+2sin\theta cos\theta=3

By using identity sin^2x+cos^2x=1

2sin\theta cos\theta=2

sin\theta cos\theta=\frac{2}{2}

sin\theta cos\theta=1

Substitute the values

\frac{1}{1}=1=LHS

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/2550256:Answered by present moment

Similar questions