Math, asked by Adarsh5409, 10 months ago

If sin θ + cos θ = √3, then prove that tan θ + cot θ =1

Answers

Answered by Anonymous
20

\huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given,

 \large{ \sf{sin \: x + cos \: x =  \sqrt{3} }}............(1)

To Prove

 \sf{tan \: x + cot \: x = 1}

Squaring Equation (1) on both sides,

 \large{ \sf{ {(sin \: x +  \: cos \: x)}^{2}}} =  \sqrt{3 {}^{2} }  \\  \\  \large{ \leadsto \:  \sf{sin {}^{2}x + cos {}^{2}x + 2sin \: x.cos \:  x = 3 }} \\  \\  \large{ \leadsto \:  \sf{1 + 2sin \: x.cos \: x = 3}} \\  \\  \huge{ \leadsto \:  \boxed{ \sf{sin \: x.cos \: x = 1}}}

Now,

 \large{ \sf{tan \: x + cot \: x}} \\  \\  \large{\rightarrow \:  \sf{ \frac{sin \: x}{cos \: x}  +  \frac{cos \: x}{sin \: x} }} \\  \\  \large{ \rightarrow \:  \sf{ \frac{sin {}^{2} x + cos {}^{2}x }{sin \: x.cos \: x} }} \\  \\  \huge{ \rightarrow \:  \tt{1}}

Henceforth,Proved

Answered by sidrahmed23
4

Answer:

answer in attachment

Step-by-step explanation:

sin θ + cos θ = √3, (given)

Squaring both sides,

we get

sin^2 θ +cos^2 θ +2cos θ sin θ =3

2sin θ cos θ =2

sin θ cos θ =1..............(i)

Now tan θ +cot θ =1

=sin θ /cos θ +cos θ /sin θ =1

= (sin^2 θ +cos ^2θ )/sin θ cos θ = 1/(sin θ cos θ )

=1/1 = 1

thank you!

Attachments:
Similar questions