Math, asked by adithirk, 20 days ago

If sinƟ + cos Ɵ = √cos Ɵ, (Ɵ ≠ 900 ) then the value of tan Ɵ is (a) √2 - 1 (b) √2 + 1 (c) √2 (d) - √2​

Answers

Answered by hukam0685
2

Step-by-step explanation:

*Given:

 \sin( \theta)  + \cos( \theta) =  \sqrt{2}\cos( \theta),\quad( \theta \neq90°) \\

To find: The value of  \tan( \theta) is

(a) √2 - 1

(b) √2 + 1

(c) √2

(d) - √2

Solution:

Tip:

 \bf \frac{ \sin \theta }{\cos \theta}  = \tan\theta\\

Step 1: Take the given trigonometric equation

\sin( \theta)  + \cos( \theta) =  \sqrt{2}\cos( \theta) \\

Step 2: Take  \cos( \theta) to RHS

 {sin} \theta  =  \sqrt{2} \cos( \theta) - \cos( \theta) \\

Step 3: Take  \cos( \theta) common from both terms in RHS

 {sin} \theta =  (\sqrt{2}  - 1 ){cos}\theta \\

Step 4: Take cos \theta to LHS

 \frac{ \sin \theta }{\cos \theta}  =  \sqrt{2}  - 1 \\

 \bold{\tan\theta =  \sqrt{2}  - 1} \\

Final answer:

\bold{\tan\theta =  \sqrt{2}  - 1} \\

Option a is correct.

Hope it helps you.

Note*: Question is corrected.

Learn more:

If 3 cot A = 4, check whether 1-tan^2 A/1+tan^2 A=cos^2 A -sin^2 A or not.

https://brainly.in/question/5220875

Solve the equation: √3 sin θ - cos θ = √2

https://brainly.in/question/7030037

Similar questions