If Sin θ+ Cos θ = m and Sec θ + Cosec θ = n then show that n(m² – 1) = 2m.
Answers
Answered by
6
GIVEN:
Sin θ+ Cos θ = m…………….(1)
Sec θ + Cosec θ = n………….(2)
LHS = n(m² – 1)
LHS= (Sec θ + Cosec θ) { (Sin θ+ Cos θ )² - 1}
[From eq 1 & 2]
LHS = (1/cosθ + 1/sinθ ) {sin²θ + cos ²θ + 2 sinθ cosθ - 1}
[ Sec θ = 1/cosθ , Cosec θ = 1/sinθ , (a+b)² = a² +b²+2ab]
= (sinθ + cosθ / cosθ sinθ) ( 1 + 2 sinθ cosθ - 1)
[ sin² θ + cos²θ = 1]
= (sinθ + cosθ / cosθ sinθ) (2 sinθ cosθ )
LHS = 2(sinθ + cosθ) = 2m = RHS
[ From eq 1]
LHS = RHS
HOPE THIS WILL HELP YOU...
Sin θ+ Cos θ = m…………….(1)
Sec θ + Cosec θ = n………….(2)
LHS = n(m² – 1)
LHS= (Sec θ + Cosec θ) { (Sin θ+ Cos θ )² - 1}
[From eq 1 & 2]
LHS = (1/cosθ + 1/sinθ ) {sin²θ + cos ²θ + 2 sinθ cosθ - 1}
[ Sec θ = 1/cosθ , Cosec θ = 1/sinθ , (a+b)² = a² +b²+2ab]
= (sinθ + cosθ / cosθ sinθ) ( 1 + 2 sinθ cosθ - 1)
[ sin² θ + cos²θ = 1]
= (sinθ + cosθ / cosθ sinθ) (2 sinθ cosθ )
LHS = 2(sinθ + cosθ) = 2m = RHS
[ From eq 1]
LHS = RHS
HOPE THIS WILL HELP YOU...
Answered by
1
Hey..!!!
__________
__________
Given,
Sin θ+ Cos θ = m
Sec θ + Cosec θ = n
LHS = n ( m^2 -1)
= (secθ + cosecθ ) [ ( sinθ + cosθ )^2 -1]
= (secθ + cosecθ ) [ sin^2θ + cos^2θ + 2 sinθ cosθ -1]
= (secθ + cosecθ ) [ 1+2 sinθcosθ -1]
= ( secθ + cosecθ ) [ 2 sinθ cosθ ]
= ( 1/cosθ + 1/ sinθ ) [ 2 sinθ cosθ ]
= ( Sinθ + cosθ / sinθ cosθ ) [ 2 sinθ cosθ ]
= 2 ( sinθ + cosθ )
= 2m = RHS proved Ans.
LHS = RHS
________________
________________
I Hope it's help you...!!!
please tick the brainliest answer.
__________
__________
Given,
Sin θ+ Cos θ = m
Sec θ + Cosec θ = n
LHS = n ( m^2 -1)
= (secθ + cosecθ ) [ ( sinθ + cosθ )^2 -1]
= (secθ + cosecθ ) [ sin^2θ + cos^2θ + 2 sinθ cosθ -1]
= (secθ + cosecθ ) [ 1+2 sinθcosθ -1]
= ( secθ + cosecθ ) [ 2 sinθ cosθ ]
= ( 1/cosθ + 1/ sinθ ) [ 2 sinθ cosθ ]
= ( Sinθ + cosθ / sinθ cosθ ) [ 2 sinθ cosθ ]
= 2 ( sinθ + cosθ )
= 2m = RHS proved Ans.
LHS = RHS
________________
________________
I Hope it's help you...!!!
please tick the brainliest answer.
Similar questions
English,
8 months ago
Chemistry,
8 months ago
Social Sciences,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago