Math, asked by Anonymous, 1 year ago

If sin + cos = root3 Prove that tan + cot = 1

Answers

Answered by sarthakdude
4

Hey mate

 \sin( \alpha  )  +  \cos( \alpha )  =  \sqrt{3}

On squaring both sides

  {sin}^{2} ( \alpha )  +  \cos {}^{2} ({ \alpha } )  + 2 \sin( \alpha ) . \cos( \alpha  )  = 3

2 \sin( \alpha ) . \cos( \alpha ) = 3 - 1 = 2

Now we get

 \sin( \alpha ) . \cos( \alpha )  = 1

Now, Taking RHS

 \tan( \alpha )  +  \cot( \alpha )

writing it's extended form

sin^2+cos^2/cos.sin=1

So we get

tan+cot=1

HENCE PROVED

Answered by Anonymous
3

SOLUTION

Given,

sin + cos = 3

sin + cos = √3 Prove = tan + cot =1

(sin + cos)^2= 3

=)sin^2 + cos^2 + 2 sin.cos = 3

=) 1+ 2 sin.cos= 3

=) 2sin.cos = 2

=) sin.cos= 1............(1)

=) tan + cot = sin/cos+ cos/sin

=)tan + cot = sin^2+ cos^2/sin.cos

=) tan+ cot = 1/sin.cos= 1/1 {sin.cos= 1 from (1)

=) tan + cot = 1

hence, proved

hope it helps ✔️

Similar questions