Math, asked by Taris5078, 9 months ago

If sin (πcos theta) = cos(πsin theta), then cos (theta + π/4) is equal to

Answers

Answered by senboni123456
0

Answer:

 \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }

Step-by-step explanation:

Given that,

 \sin(\pi \cos( \alpha ) )  =  \cos(\pi \sin( \alpha ) )

 =  \cos(\pi \sin( \alpha ) )  =  \cos( \frac{\pi}{2} - \pi \cos( \alpha )  ) ........{ \sin(\pi \cos( \alpha ) )  =  \cos( \frac{\pi}{2} - \pi \cos( \alpha )  )

 = \pi \sin( \alpha )  = 2n\pi +  \frac{\pi}{2}  - \pi \cos( \alpha )  \:  \: or \:  \: \pi \sin( \alpha )  = 2n\pi  -   \frac{\pi}{2}   +  \pi \cos( \alpha )

 = \pi( \sin( \alpha )  +  \cos( \alpha ) ) = 2n\pi +  \frac{\pi}{2}  \:  \: or \:  \:  \pi( \sin( \alpha )   -  \cos( \alpha ) ) = 2n\pi  -   \frac{\pi}{2}

 =  \sin( \alpha )  +  \cos( \alpha ) = 2n +  \frac{1}{2}  \:  \:.....(i) or \:  \: \sin( \alpha )   -    \cos( \alpha ) = 2n  -   \frac{1}{2}.....(ii)

subtracting (ii) from (i), we get

Similar questions