If sin ( cot-1 (x + 1) ) = cos ( tan-1x ) ...... find x
afdwl:
Is that cot inverse ?
Answers
Answered by
2
We have to find the value of x if sin(cot¯¹(x + 1)) = cos(tan¯¹x)
Solution : here sin(cot¯¹(x + 1)) = cos(tan¯¹x)
we know, sin(π/2 - θ) = cosθ
so, cos(tan¯¹x) = sin(π/2 - tan¯¹x)
Now, sin(cot¯¹(x + 1)) = cos(tan¯¹x) = sin(π/2 - tan¯¹x)
⇒cot¯¹(x + 1) = π/2 - tan¯¹x
⇒cot¯¹(x + 1) + tan¯¹x = π/2
Case 1 : Let's take x > 0
cot¯¹(x + 1) = tan¯¹1/(x + 1)
⇒tan¯¹1/(x + 1) + tan¯¹x = π/2
⇒tan¯¹[{1/(x + 1) + x}/{1 - x/(x + 1)}] = π/2
⇒{(1 + x² + x)}/1 = tanπ/2 = 1/0
0 = 1 , not possible solution.
Case 2 : let's take x < 0
Then, cot¯¹(x + 1) = -tan¯¹1/(x + 1)
so, -tan¯¹1/(x + 1) + tan¯¹ x = π/2
⇒tan¯¹[{x - 1/(x + 1) }/{1 + x/(x + 1)}] = π/2
⇒(x² + x - 1)/(x + 1 + x) = tanπ/2 = 1/0
⇒2x + 1 = 0
⇒x = -1/2
therefore the value of x is -1/2
Similar questions