Math, asked by badshah0007, 9 months ago

If Sin α + Sin β = a and Cos α + Cos β = b show that Cos (α + β) = ( b^2- a^2 ) / ( b^2 + a^2 )​

Answers

Answered by senboni123456
2

Step-by-step explanation:

Given,

 \sin( \alpha )  +  \sin( \beta )  = a \:  \: and \:  \:  \cos( \alpha )  +  \cos( \beta )  = b

Now, squaring both sides, we have,

 {a}^{2}  =  \sin ^{2} ( \alpha )   + \sin ^{2} ( \beta )  + 2 \sin( \alpha )  \sin( \beta )  \:  \: and \:  \:  {b}^{2}  =  \cos^{2} ( \alpha )  +  \cos^{2} ( \beta )  + 2 \cos( \alpha )  \cos( \beta )

Now, RHS=

  \frac{  {b}^{2} -  {a}^{2} }{  {b}^{2} +  {a}^{2} }  =  \frac{ \cos^{2} ( \alpha ) +   \cos^{2} ( \beta ) +2   \cos( \alpha )  \cos( \beta )  -  \sin^{2} ( \alpha )  -  \sin ^{2} ( \beta )  - 2 \sin( \alpha )  \sin( \beta ) }{ \: \cos^{2} ( \alpha ) +   \cos^{2} ( \beta ) +2   \cos( \alpha )  \cos( \beta )   + \sin^{2} ( \alpha )   +  \sin ^{2} ( \beta )   + 2 \sin( \alpha )  \sin( \beta )\: }

 =  >  \frac{ {b}^{2}  -  {a}^{2}  }{ {b}^{2} +  {a}^{2}  }  =  \frac{ \cos( 2\alpha ) +  \cos( 2\beta ) + 2 \cos( \alpha   + \beta )   }{2 + 2 \cos( \alpha -   \beta ) }

  \frac{  {b}^{2} -  {a}^{2} }{  {b}^{2} +  {a}^{2} }  =  \frac{2 \cos( \alpha +   \beta )  \cos( \alpha   - \beta )  + 2 \cos( \alpha   + \beta ) }{2 + 2 \cos( \alpha  -  \beta ) }

\frac{  {b}^{2} -  {a}^{2} }{  {b}^{2} +  {a}^{2} }  =  \frac{2 \cos( \alpha +   \beta )( \cos( \alpha   - \beta ) + 1)  }{2(1 +  \cos( \alpha   - \beta )) }

 =  > \frac{  {b}^{2} -  {a}^{2} }{  {b}^{2} +  {a}^{2} }  =  \cos( \alpha  +  \beta )

=LHS

Since, LHS=RHS,

Hence proved

Similar questions