if sin α *sin β - cos α * cos β + 1= 0 , show that, 1 + cot α * tan β = 0
Answers
Answered by
33
= sinα*sinβ - cosα*cosβ = -1
multiplying by -1
= cosα*cosβ - sinα*sinβ = 1
= cos(α+β) = 1
= (α + β ) = 0 ..........i)
= 1 + cotα*tanβ
= 1 + (cosα*sinβ /sinα*cosβ)
= sinα*cosβ + cosα*sinβ
= sin(α + β) ......ii)
from equaton i) substituting (α+β) in ii)
= sin(0)
= 0
hope it helped you
Answered by
6
Answer:0
Step-by-step explanation: sin alfa sin beta - cos alfa cos beta +1 =0
বা, cos alfa cos beta - sin alfa sin beta =1
বা , cos (alfa + beta ) =1
বা , alfa + beta =0
বা , alfa = - beta
বা , 1 + cot alfa tan beta বা , 1+ cos ( -beta )
বা , 1 - cot beta ×1/ cot beta
বা , 1 -1 =0 proved
Similar questions
Hindi,
6 months ago
Social Sciences,
6 months ago
English,
6 months ago
Math,
1 year ago
Biology,
1 year ago
World Languages,
1 year ago