If Sin θ + Sin2 θ = 1 , show that Cos2 θ + Cos4 θ = 1
Answers
Answered by
12
Question:
If Sinθ + Sin²θ = 1 , show that Cos² θ + Cos^4θ = 1 ( Nice question ).
Given:
- Sinθ + Sin² = 1
To Prove:
- Cos²θ + cos^4θ = 1
Proof:
Given that,
• Sinθ + Sin²θ = 1
➡ Sinθ = 1 - Sin²θ
[ °.° Sin²θ + Cos²θ = 1 ]
[ .°. 1 - Sin²θ = Cos²θ ]
➡ Sinθ = Cos²θ _____________eqn. (1)
Now,
➡ Sinθ = Cos²θ [ From eqn. (1) ]
[ Squaring on both sides ; We get ]
➡ (Sinθ)² = (Cos²θ)²
➡ Sin²θ = Cos^4θ
➡ 1 - Cos²θ = Cos^4θ
➡ .°. Cos²θ + Cos^4θ = 1
Hence Proved!! ☺
Similar questions