Math, asked by kansalakshar10, 1 year ago

If sinθ+sin²θ+sin³θ=1, prove that cos⁶θ–4cos⁴θ+8cos²θ=4.

Answers

Answered by Anonymous
6

☺️Hello☺️

Hope it helps u.....plz mark as brainlist......

Attachments:
Answered by jitumahi435
2

We have:

\sin \theta +  \sin^2 \theta +  \sin^3 \theta = 1

To prove that: \cos^6 \theta - 4\cos^4 \theta + 8\cos^2 \theta = 4.

Solution:

\sin \theta +  \sin^2 \theta +  \sin^3 \theta = 1

\sin \theta + \sin^3 \theta = 1 - \sin^2 \theta

\sin \theta (1 + \sin^2 \theta) = \cos^2 \theta

Using the trigonometric identity:

\cos^2 \theta = 1 - \sin^2 \theta

\sin \theta (1 + 1 - \cos^2 \theta) =

\sin \theta (2 - \cos^2 \theta) =

Squaring both sides, we get

 [\sin \theta(2-\cos^2 \theta)]^2 = (\cos^2 \theta)^2

\sin^2 \theta(4+\cos^4 \theta-4\cos^2 \theta) = \cos^4 \theta

(1-\cos^2 \theta)(4+\cos^4 \theta-4\cos^2 \theta) = \cos^4 \theta

⇒ 4 + 4\cos^4 \theta - 4\cos^2 \theta - 4

⇒ 4 + 4\cos^4 \theta - 4\cos^2 \theta - 4

⇒ 4 + 4\cos^4 \theta - 4\cos^2 \theta - 4

\cos^6 \theta - 4\cos^4 \theta + 8\cos^2 \theta = 4. proved.

Thus, if \sin \theta +  \sin^2 \theta +  \sin^3 \theta = 1, then \cos^6 \theta - 4\cos^4 \theta + 8\cos^2 \theta = 4. proved.

Similar questions