Math, asked by tangylemon1968, 1 year ago

if sin square theta into cos square theta into 1 + tan squared theta into 1 + cot square theta is equal to X find the value of x​

Answers

Answered by AditBaliga
13

Answer:

1

Step-by-step explanation

=sin²A * cos²A * (1+tan²A) * (1+cot²A)

[(1+tan²A) = sec²A , (1+cot²A) = cosec²A)]

=sin²A * cos²A * sec²A * cosec²A

=1

Answered by Anonymous
13

Answer:

\bold\red{x=1}

Step-by-step explanation:

For simplicity, let's denote theta as alpha .

Given,

 { \sin }^{2}  \alpha  \times  { \cos}^{2}  \alpha  \times (1 +  { \tan }^{2} \alpha ) \times (1 +  { \cot}^{2}   \alpha ) = x

But,

we know that,

1 +  { \tan }^{2}  \alpha  =  { \sec}^{2}  \alpha

and,

1 +  { \cot }^{2}  \alpha  =  { \cosec}^{2}  \alpha

So, putting the values,

we get,

 x =   ( { \sin }^{2}  \alpha  \times  { \cosec }^{2} \alpha)   \times ( { \cos}^{2}  \alpha  \times  { \sec}^{2}  \alpha )

But,

 \sin( \alpha )  =  \frac{1}{ \cosec( \alpha ) }

and,

 \cos( \alpha )  =  \frac{1}{\sec( \alpha )}

So,

Putting the values,

we get,

\bold{x = 1}

Similar questions