Math, asked by Javeriyashaikh353, 1 year ago

If sin tetha=5/17, what is the value of tan tetha

Answers

Answered by praveen752
0
find the value of adjacent side(PYTHAGORES THEOREM)
then substitute u will get the valve
Answered by creamiepie
0
Given,

Sin theta = \frac{5}{17}

=> \frac{p}{h} = \frac{5}{17} = k (let)

=> p = 5k and h = 17k


Applying Pythagoras theorem

 {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  =  > ( {17k})^{2}  = ( {5k})^{2}  +  {b}^{2}  \\  \\  =  > 289 {k}^{2}  - 25 {k}^{2}   =  {b}^{2}  \\  \\  =  > 264 {k}^{2}    =  {b}^{2}  \\  \\  =  > b =  \sqrt{264 {k}^{2} }  \\  \\  =  > b \:  =  \sqrt{264} \:  \:  \:  k
tan \: theta =  \frac{p}{b}  \\  \\  =  \frac{ {5k} }{ \sqrt{264} \:  \:  \: k }  \\  \\  =  \frac{5}{ \sqrt{264} }


 \huge{answer =  \frac{5}{ \sqrt{264} } }
Similar questions