If sin θ = and d > 0, find the value of cos θ & tan θ
Answers
- sin θ = and d > 0.
- Find the value of cos θ & tan θ.
- Sin ∅ =
We know that,
Therefore,
- cos² ∅ = 1 - sin² ∅
Substituting the values,
cos² ∅ = 1 -
cos² ∅ = 1 -
Taking LCM,
cos² ∅ =
cos² ∅ =
cos² ∅ =
cos² ∅ =
Transposing square to RHS,
cos ∅ =
cos ∅ =
cos ∅ =
Therefore,
- cos ∅ =
We know that,
- Tan ∅ =
Substituting the values,
Tan ∅ =
Tan ∅ =
Tan ∅ =
Therefore,
Step-by-step explanation:
Given:-
Sin θ = c / √(c^2+d^2) ,d > 0
To find:-
Find the values of Cos θ and Tan θ ?
Solution:-
Method -1:-
Given that
Sin θ = c / √(c^2+d^2) ,d > 0---------(1)
On squaring both sides then
=> (Sin θ)^2 =[ c / √(c^2+d^2)]^2
=> Sin^2 θ = c^2/(c^2+d^2)
=> 1- Sin^2 θ = 1-[c^2/(c^2+d^2)]
=> 1- Sin^2 θ =[ (c^2+d^2)-c^2]/(c^2+d^2)
=> 1- Sin^2 θ = d^2/(c^2+d^2)
We know that
Sin^2 A + Cos^2 A = 1
=> Cos^2 θ = d^2/(c^2+d^2)
=> Cos θ =√[d^2/(c^2+d^2)]
Since d > 0
Cos θ = d / √(c^2+d^2) --------(1)
On dividing (1) by (2) then
From (1)&(2) then
=> Sin θ/ Cos θ =[c /√(c^2+d^2)] / [d /√(c^2+d^2)]
=> Sin θ/Cos θ = c/d
Since √(c^2+d^2) is cancelled in both numerator and denominator
We know that
Tan A = Sin A / Cos A
Tan θ = c/d
Method -2:-
Given that
Sin θ = c / √(c^2+d^2) ,d > 0---------(1)
We know that
Sin A = Opposite side to angle A/ Hypotenuse
Opposite side to angle A/ Hypotenuse
= c / √(c^2+d^2)
Let the opposite side = ck units
Let the hypotenuse = √(c^2+d^2) k units
In the right triangle ABC ,
By Pythagoras theorem
AC^2 = AB^2+BC^2
[√(c^2+d^2)k]^2 = AB^2 + (ck)^2
=> (c^2+d^2)k^2-(c^2k^2) = AB^2
=> c^2k^2+d^2k^2-c^2k^2 = AB^2
AB^2 = d^2k^2
AB=√(d^2k^2)
AB = dk units
Now Cos A
=Adjacent side to A/Hypotenuse
=> Cos θ = AB/AC
=> Cos θ = dk/√(c^2+d^2)k
=> Cos θ = d/√(c^2+d^2)
Now Tan A
= Opposite side to A/ Adjacent side to A
Tan θ = BC/AB
=> ck /dk
=> c/d
Tan θ = c/d
Answer:-
The value of Cos θ = d / √(c^2+d^2)
The value of Tan θ = c/d
Used formulae:-
- Sin A = Opposite side to angle A/ Hypotenuse
- Cos A =Adjacent side to A/Hypotenuse
- Tan A = Opposite side to A/ Adjacent side to A
- Tan A = Sin A/ Cos A
- Pythagoras theorem:-
In a right angled triangle , The square of the hypotenuse is equal to the sum of the squares of the other two sides.