Math, asked by AliciaZhou, 1 year ago

If sin∅ = ⅜ then, find sec∅ + tan∅​

Answers

Answered by Anonymous
18

SOLUTION:-

Given:

sin theta= 3/8.

To find:

sec theta + tan theta.

Explanation:

sin \theta =  \frac{Perpendicular}{Hypotenuse}  =  \frac{3}{8}

So,

Using Pythagoras Theorem:

(Hypotenuse)²=(base)²+(perpendicular)²

=) H² = B² + P²

=) 8² = B² + 3²

=) 64 = B² +9

=) B² = 64 -9

=) B² = 55

=) B=√55

Now,

sec \theta + tan \theta \\  \\  =  >  \frac{H}{B}  +  \frac{P}{B}  \\  \\  =  >  \frac{8}{ \sqrt{55} }  +  \frac{3}{  \sqrt{55}  }  \\  \\  =  >  \frac{8 + 3}{ \sqrt{55} }  \\   \\  =  >  \frac{11}{ \sqrt{55} }  \\ [Rationalise] \\  =  >  \frac{11 \times  \sqrt{55} }{ \sqrt{55}  \times  \sqrt{55} } \\  \\  =  >  \frac{11 \sqrt{55} }{55}  \\  \\  =  >  \frac{ \sqrt{55} }{5}

Thank you.

Similar questions