Math, asked by AlanSteve, 1 year ago

if sin theta = 1/2 . Show that 3 cos theta minus 4 cos cube theta =0

Answers

Answered by sifatbajaj
201
Let theta be ₹.
sin ₹ = 1/2
sin ₹ = sin 30°
₹ = 30°
to prove:-
3cos₹ - 4cos^3₹ = 0
3cos30° - 4cos^3 30° = 0
3( \sqrt{3} /2) - 4( \sqrt{3} /2)^{3}  = 0
0 = 0
Hence Proved
Answered by parmesanchilliwack
204

Answer:

Given, sin \theta = \frac{1}{2}

Since, we know that,

cos^2\theta = 1 - sin^2\theta

=1-(\frac{1}{2})^2=1-\frac{1}{4}=\frac{3}{4}

\implies cos \theta = \sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}

\implies cos^3 \theta = (\frac{\sqrt{3}}{2})^3=\frac{3\sqrt{3}}{8}

Thus,

3 cos \theta - 4 cos^3 \theta

=3\times \frac{\sqrt{3}}{2} - 4 \times \frac{3\sqrt{3}}{8}

=\frac{3\sqrt{3}}{2}-\frac{3\sqrt{3}}{2}

=0

Hence, proved.

Similar questions