Math, asked by rajeshrobert03, 1 year ago

If sin theta/1-cos theta+sin theta/1+cos theta=4 find the value of theta

Answers

Answered by aquialaska
64

Answer:

Value of  \theta is 30°  

Step-by-step explanation:

Given Equation: \frac{sin\,\theta}{1-cos\,\theta}+\frac{sin\,\theta}{1+cos\,\theta}=4

To find: Value of \theta

Consider,

\frac{sin\,\theta}{1-cos\,\theta}+\frac{sin\,\theta}{1+cos\,\theta}=4

\frac{sin\,\theta\times(1+cos\,\theta)+sin\,\theta\times(1-cos\,\theta)}{(1-cos\,\theta)(1+cos\,\theta)}=4

\frac{sin\,\theta+sin\,\theta\:cos\,\theta+sin\,\theta-sin\,\theta\:cos\,\theta)}{1^2-cos^2\,\theta}=4

\frac{2sin\,\theta}{sin^2\,\theta}=4     ( because sin^2\,\theta+cos^2\,\theta=1)

\frac{2}{sin\,\theta}=4    

sin\,\theta=\frac{2}{4}  

sin\,\theta=\frac{1}{2}  

sin\,\theta=sin\,30^{\circ}     ( because sin\,30^{\circ}=\frac{1}{2})

\implies\theta=30^{\circ}

Therefore, Value of  \theta is 30°  

Answered by bansalkavya9b11757
1

Answer:

mark brainliest

Step-by-step explanation:

as I screen shot the above answer to save my time and gain 5points

Attachments:
Similar questions