if sin theta 1 + sin theta 2 + sin theta is equal to 3 then find the value of cos theta + cos theta 2 + cos theta 3
Answers
cosθ1+cosθ2+cosθ3=0
Explanation:Value of sine ratio ranges from −1 to 1 i.e. [−1,1]
Now as sinθ1+sinθ2+sinθ3=3
We must have each of them as 1
and hence θ1=θ2=θ3=90∘
and as cos90∘=0
cosθ1+cosθ2+cosθ3=0
The value of cos θ₁ + cos θ₂ + cos θ₃ = 0
Correct question : If sin θ₁ + sin θ₂ + sin θ₃ = 3 then find the value of cos θ₁ + cos θ₂ + cos θ₃
Given :
sin θ₁ + sin θ₂ + sin θ₃ = 3
To find :
The value of cos θ₁ + cos θ₂ + cos θ₃
Solution :
Step 1 of 3 :
Write down the given equation
Here the given equation is
sin θ₁ + sin θ₂ + sin θ₃ = 3
Step 2 of 3 :
Find the value of θ₁ , θ₂ , θ₃
sin θ₁ + sin θ₂ + sin θ₃ = 3
We know that the maximum value of sine of an angle is 1
∴ sin θ₁ + sin θ₂ + sin θ₃ = 3 gives
sin θ₁ = sin θ₂ = sin θ₃ = 1
∴ θ₁ = θ₂ = θ₃ = 90°
Step 3 of 3 :
Calculate the value of cos θ₁ + cos θ₂ + cos θ₃
θ₁ = θ₂ = θ₃ = 90°
∴ cos θ₁ + cos θ₂ + cos θ₃
= cos 90° + cos 90° + cos 90°
= 0 + 0 + 0
= 0
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
Find sin 22 cos 78 +sin 78 cos 22
https://brainly.in/question/8940320
2. Exact value of (sin30°)(tan45°)+(tan30°)(sin60°)=
https://brainly.in/question/8679351
#SPJ3