Math, asked by simharaja65, 1 month ago

If sin theta = 12/13 find the value of cos theta+5 sin theta by sin theta - cos Theta if 0 < theta < 90°​

Answers

Answered by satamil0505
0

Step-by-step explanation:

can be in the first quadrant

0

θ

90

or the fourth quadrant

270

θ

360

If

θ

is in the first quadrant,

then

sin

θ

=

5

13

cos

θ

=

12

13

tan

θ

=

5

12

Therefore,

sin

2

θ

=

2

sin

θ

cos

θ

=

2

×

5

13

×

12

13

=

120

169

cos

2

θ

=

cos

2

θ

sin

2

θ

=

(

12

13

)

2

(

5

13

)

2

=

144

169

25

169

=

119

169

If

θ

is in the fourth quadrant,

then

sin

θ

=

5

13

cos

θ

=

12

13

tan

θ

=

5

12

Therefore,

sin

2

θ

=

2

sin

θ

cos

θ

=

2

×

5

13

×

12

13

=

120

169

cos

2

θ

=

cos

2

θ

sin

2

θ

=

(

12

13

)

2

(

5

13

)

2

=

144

169

25

169

=

119

169

Answered by shihabmakkah35
0

Answer:

Given,

sinA=

13

12

We know that,

sinA=

Hypotenuse

oppositeSide

From Pythagoras theorem,

(Hypotenuse)

2

=(oppositeSide)

2

+(adjacentSide)

2

13

2

=12

2

+(adjacentSide)

2

(adjacentSide)

2

=169−144=25

(adjacentSide)=5

cosA=

Hypotenuse

AdjacentSide

=

13

5

tanA=

AdjacentSide

OppositeSide

=

5

12

Therefore,

2sinθcosθ

sin

2

θ−cos

2

θ

×

tan

2

θ

1

=

2(

13

12

)(

13

5

)

(

13

12

)

2

−(

13

5

)

2

×

(

5

12

)

2

1

=

2(

13

12

)(

13

5

)

(

169

144

)−(

169

25

)

×

144

25

=

(

169

120

)

(

169

144−25

)

×

144

25

=

120

119

×

144

25

=

24

119

×

144

5

=

3456

595

Step-by-step explanation:

i hope it's helpful for you

Similar questions