Math, asked by ajaysteave8644, 1 year ago

if sin theta=12/13 find the value of
sec theta + tan theta/sec theta- tan theta

Answers

Answered by jaideep88
18
hope it is useful for u
Attachments:
Answered by minasharmaminaedu
0

Concept:

The trigonometric ratios are given by,
sin∅ = \frac{Opposite Side}{Hypotenuse}  Cos∅ = \frac{Adjacent Side}{Hypotenuse}

Given:

The value of sin∅ = \frac{12}{13}

Find:

We are asked to find the value of \frac{sec\ \phi + \ tan \ \phi }{sec\ \phi - \ tan \ \phi} .

Solution:

\frac{sec\ \phi + \ tan \ \phi }{sec\ \phi - \ tan \ \phi}

= \frac{\frac{1}{cos \ \phi} + \frac{sin \ \phi}{cos \ \phi}}{\frac{1}{cos \ \phi} - \frac{sin \ \phi}{cos \ \phi}}

= \frac{1 + sin \phi}{1 - sin \phi}

= \frac{1 + \frac{12}{13} }{1- \frac{12}{13}}

= \frac{13 + 12}{13 - 12}

= 25

Thus , the value of the expression  \frac{sec\ \phi + \ tan \ \phi }{sec\ \phi - \ tan \ \phi} is 25.

#SPJ3

Similar questions