Math, asked by Meghanasambaru, 8 days ago

If sin theta=3/5 prove (tan theta+sec theta)^2=4​

Answers

Answered by Anonymous
74

  \large{ \rm  \bull \underline{  \underline{Given:-}}}

  •  \sin \theta =  \dfrac{3}{5}

 \overline{\rule{ 200pt}{2pt}}

  \large{ \rm  \bull \underline{  \underline{To  \: Prove :-}}}

  •  ( \tan \theta +  \sec \theta )^{2}  = 4

 \underline{\rule{ 200pt}{2pt}}

  \large{ \rm  \bull \underline{  \underline{Proof :-}}}

Substitute the given values sin θ

 \qquad{ ━━━━━━━━━━━━━━━━━━━━━━━━━━━}

  •  \rm \sin \theta =  \dfrac{3}{5} = \dfrac{Opposite \: side}{Hypotenuse} \\
  •  \rm \tan \theta =  \dfrac{3}{?} = \dfrac{Opposite \: side}{Adjacent \: side}\\
  •  \rm \sec \theta =  \dfrac{5}{?} = \dfrac{Hypotenuse}{Adjacent \: side}

 \qquad{ ━━━━━━━━━━━━━━━━━━━━━━━━━━━}

AB = 3

AC = 5

BC = ?

 {\rule{ 200pt}{2pt}}

To find the missing side we need to use Pythagoras theorem.

 \dag \underline{ \boxed{\rm{Hypotenuse ^{2}  = Opposite ^{2} +Adjacent ^{2} }}} \dag

\dag \underline{ \boxed{\rm Missing \:Side² = Hypotenuse²- Adjacent\: Side² }}\dag

  : \longmapsto  \rm BC^{2} =  {5}^{2} -  {3}^{2}  \\\\

  : \longmapsto  \rm BC=  \sqrt{ {5}^{2} -  {3}^{2}  } \\\\

  : \longmapsto \rm BC =  \sqrt{ 25-  9  } \\\\

  : \longmapsto  \rm BC  = \sqrt{ 16 } \\\\

  : \longmapsto \rm BC =  4  \\\\

So the other side is = 4

 :  \longmapsto \rm  ( \tan \theta +  \sec \theta )^{2}  = 4\\\\

 :  \longmapsto \rm  \bigg\lgroup \tan \theta =  \dfrac{3}{4}  +  \sec  \theta=  \dfrac{5}{4}   \bigg\rgroup ^{2} \\\\

 :  \longmapsto \rm  \bigg\lgroup    \dfrac{3}{4}  +   \dfrac{5}{4}   \bigg\rgroup ^{2}  \\\\

 :  \longmapsto \rm  \bigg\lgroup    \dfrac{8}{4}    \bigg\rgroup ^{2}  \\\\

 :  \longmapsto \rm  \bigg\lgroup  \cancel{   \dfrac{8}{4} }   \bigg\rgroup ^{2}  \\\\

 :  \longmapsto \rm  \big\lgroup  2 \big\rgroup ^{2}  \\\\

 :  \longmapsto \rm    4   \\\\

Hence Proved

 {\rule{ 200pt}{2pt}}

Additional Information:-

Ratios:-

\begin{array}{ | c|c|c|c|c|c |}\hline \rm\angle\:A& \:  \:   \: 0\degree&30\degree&45\degree&60\degree&90\degree\\ \hline \rm\sin \: A&0& \dfrac{ 1}{2}&\dfrac{1}{\sqrt{2}}&\dfrac{\sqrt{3}}{2}&1\\ \hline   \rm\cos \:A&1& \dfrac{ \sqrt{3} }{2}  & \dfrac{1}{ \sqrt{2}} & \dfrac{1}{2}&0 \\  \hline  \rm \tan \:  A&0& \dfrac{1}{ \sqrt{3} }&1& \sqrt{3}& \rm{ \infty } \\  \hline  \rm\cosec \: A& \infty & 2& \sqrt{2} &  \dfrac{2}{\sqrt{3} }&1 \\  \hline \rm\sec \: A&1&  \dfrac{2}{ \sqrt{3} }& \sqrt{2}&2 & \infty  \\ \hline \rm \cot \: A& \infty & \sqrt{3}  &1& \dfrac{1}{ \sqrt{3} }&0  \\  \hline &&&&&\tiny{\sf @SmoothCriminal ^© }  \\  \hline \end{array}

Identities:-

  • sin(90° - A) = cos A
  • cos(90° - A) = sin A
  • tan(90° - A) = cot A
  • cot(90° - A) = tan A
  • sec(90° - A) = cosec A
  • cosec(90° - A) = sec A
  • sin² + cos² = 1
  • sec² - tan² = 1
  • 1 + tan² = sec²
  • cosec² = 1 + cot²

\rule{300pt}{9pt}

Similar questions