If sin theta = 3/5, then prove that (tan theta+sec theta)^2 = 4
Answers
Answered by
9
Answer:
sinθ=3/5
P/H=3/5
ACC TO PYTHA THM,
H²-P²=B²
5²-3²=B²
25-9=B²
16=B²
4=B cos=4/5(B/H)
(tanθ+secθ)²
(sinθ/cosθ +1/cosθ)²
(sin+1/cos)²
(sin+1)²/cos²
(3/5 +1)²/(4/5)²
(8/5)²/16/25
64/25*25/16
64/16
4= RHS
PROVED:)
Step-by-step explanation:
Answered by
0
Answer:
4=4
LHS=RHS
Step-by-step explanation:
WKT 3,5,4is a puthogorun triplets
so AB=4
(tan∅+ sec∅)² =4
(sin∅/cos∅+1/cos∅)²
sin∅+1/cos∅)²
(3/5+1/4/5)²
(3+5/5/4/5)²
(8/4)²
(64/16)
4=4
LHS = RHS
hope it helps
Similar questions