Math, asked by Anonymous, 7 months ago

if sin theta =-7/15 and theta is in the third quadrant then \sf\dfrac{7cot\theta-24tan\theta}{7cot\theta +24tan\theta} =

Answers

Answered by udayagrawal49
2

Answer:

\frac{7cot\beta-24tan\beta}{7cot\beta+24tan\beta} = \frac{1}{43}

Step-by-step explanation:

Given: sinβ = -7/15 and β is in third quadrant.

⇒ cotβ = 4√11/7

⇒ 7cotβ = 7×4√11/7 = 4√11

⇒ tanβ = 7/4√11

⇒ 24tanβ = 24*7/4√11 = 42/√11

\frac{7cot\beta-24tan\beta}{7cot\beta+24tan\beta} = \frac{4\sqrt{11}-\frac{42}{\sqrt{11}}}{4\sqrt{11}+\frac{42}{\sqrt{11}}} = \frac{4*11-42}{4*11+42} = \frac{44-42}{44+42} = \frac{2}{86}

\frac{7cot\beta-24tan\beta}{7cot\beta+24tan\beta} = \frac{1}{43}

Please mark it as Brainliest.

Answered by AdorableMe
16

Correct question :-

if sinθ  = -7/15 and theta is in the third quadrant then find the value of

\sf{ \dfrac{7cot\theta-24tan\theta}{7cot\theta+24tan\theta} }

\underline{\underline{\sf{\color{magenta}{GIVEN:-}}}}

\bullet\ \sf{sin\theta=-\dfrac{7}{15} }

\bullet θ is in the third quadrant.

\underline{\underline{\sf{\color{magenta}{TO\ FIND:-}}}}

The value of

\sf{\longrightarrow \dfrac{7cot\theta-24tan\theta}{7cot\theta+24tan\theta} }

\underline{\underline{\sf{\color{magenta}{SOLUTION:-}}}}

Using sin²θ + cos²θ = 1,

\displaystyle \sf{\bigg(\frac{-7}{25}\bigg)^2 +cos^2\theta=1}

\implies\displaystyle \sf{cos^2\theta=1-\frac{49}{625} }

\implies\displaystyle \sf{cos^2\theta=\frac{625}{625}-\frac{49}{625}  }

\displaystyle \sf{\implies cos^2\theta=\frac{576}{625} }

\displaystyle \sf{\implies cos\theta=\pm\frac{24}{25} }

As θ is in third quadrant, so cosθ will be -24/25.

  • Cos θ is negative in third quadrant,

______________________

\displaystyle \bf{ tan\theta=\frac{sin\theta}{cos\theta} }

\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\div \frac{-24}{25}  }

\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\times\frac{25}{-24}  }

\displaystyle \sf{\implies tan\theta=\frac{7}{24} }

_______________________

\displaystyle \bf{ cot\theta=\frac{1}{tan\theta}}

\displaystyle \sf{\implies cot\theta=\frac{24}{7} }

_______________________

\displaystyle \sf{\frac{7cot\theta-24tan\theta}{7cot\theta+24tan\theta} }

\displaystyle \sf{= \frac{7\times\frac{24}{7}-24\times\frac{7}{24}  }{7\times\frac{24}{7}+24\times\frac{7}{24}  } }

\displaystyle \sf{= \frac{24-7}{24+7} }

\displaystyle \sf{= \frac{17}{31} }

Therefore, the answer is 17/31.

Similar questions