Math, asked by harshraj501kumar, 1 year ago

if sin theta=a/b, show that(sec theta+tan theta) =√b+a/b-a​

Answers

Answered by amitkhokhar
202

her is your perfect answer

Attachments:
Answered by aquialaska
219

Answer:

Given:

sin\,\theta=\frac{a}{b}

To show: sec\,\theta\+tan\,\theta=\sqrt{\frac{b+a}{b-a}}

Using Trigonometric identity,

cos\,\theta=\sqrt{1-sin^2\,\theta}

cos\,\theta=\sqrt{1-(\frac{a}{b})^2}

cos\,\theta=\sqrt{(\frac{b^2-a^2}{b^2}}

cos\,\theta=\frac{\sqrt{b^2-a^2}}{b}

\implies sec\,\theta=\frac{1}{cos\,\theta}=\frac{b}{\sqrt{b^2-a^2}}

\implies tan\,\theta=\frac{sin\,\theta}{cos\,\theta}=\frac{a}{\sqrt{b^2-a^2}}

Now,

sec\,\theta+tan\,\theta

=\frac{b}{\sqrt{b^2-a^2}}+\frac{a}{\sqrt{b^2-a^2}}

=\frac{b+a}{\sqrt{(b-a)(b+a)}}

=\frac{\sqrt{b+a}\sqrt{b+a}}{\sqrt{b-a}\sqrt{b+a}}

=\frac{\sqrt{b+a}}{\sqrt{b-a}}

=\sqrt{\frac{b+a}{b-a}}

Hence Proved

Similar questions