If sin theta = a/b then prove that ( sec thetha +tan thetha ) = √b+a/b-a class 10 ka question h bhagwan apka bala kare
.
.
.
.
please help in this question
i need to know the answer
please guys please
Answers
Answered by
113
Given, sinA = a/b
Therefore, cos²A = 1 - sin²A
=> cos²A = 1 - a²/b²
=> cosA = √(b² - a²)/b
In the question: secA + tanA
= 1/cosA + sinA/cosA
= (1 + sinA)/cosA
= (1 + a/b) / (√b²-a²)/b
= [ (b + a)/b ] / [ √(b² - a²)/b ]
= (b + a) / √(b² - a²)
= √(b + a)² / √(b + a)(b - a)
= √(b + a) / √(b - a)
Answered by
63
Given :-
If sinθ = a/b
To Prove :-
secθ + tanθ = √b + a/b - a
Solution :-
Here,
LHS = secθ + tanθ
RHS = √b + a/b - a
secθ = 1/cos θ
tanθ = sinθ/cosθ
1/cosθ + sinθ/cosθ
1 + sinθ/cosθ
- cosθ = √(1 - sin²θ)
1 + sinθ/√(1 - sin²θ)
1 + (a/b)/√[1 - (a/b)²]
(b + a/b)/√(b² - a²/b²)
b + a/√(b + a)√(b - a)
√(b + a)/√(b - a)
RHS = √(b + a)/√(b - a)
Hence,Proved
Similar questions