if sin (theta + Alpha) = cos (theta + Alpha) prove that tan theta = 1 - tan Alpha/oneplus tan Alpha
Answers
Answered by
108
Answer:-
Given:-
sin (θ + α) = cos (θ + α)
⟹ sin (θ + α) / cos (θ + α) = 1
using tan θ = sin θ/cos θ we get,
⟹ tan (θ + α) = 1
⟹ tan (θ + α) = tan 45°
[ tan 45° = 1 ]
On comparing both sides we get;
⟹ θ + α = 45°
⟹ θ = 45° + (- α)
Again applying tan on both sides we get,
⟹ tan θ = tan [ 45° + ( - α) ]
Using tan (A + B) = (tan A + tan B) / 1 - tan A tan B in RHS we get,
Hence, Proved.
BrainlyIAS:
Perfection on peaks ♥
Answered by
111
Gɪᴠᴇɴ :
Tᴏ Pʀᴏᴠᴇ :
Pʀᴏᴏғ :
Gɪᴠᴇɴ ᴛʜᴀᴛ,
➛
➛
➛
➛
➛
➛
↝ Using tan function on both side,
➛
↝ Using the below relation,
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
Similar questions