Math, asked by vedmishramau, 2 months ago

if sin (theta + Alpha) = cos (theta + Alpha) prove that tan theta = 1 - tan Alpha/oneplus tan Alpha
if   \sin(theta +   \alpha  ) \:  =  \cos(theta +  \alpha ) prove \: that \:  \tan(theta)  = 1 +  \tan\alpha upon \: 1 -  \tan\alpha

Answers

Answered by VishnuPriya2801
108

Answer:-

Given:-

sin (θ + α) = cos (θ + α)

⟹ sin (θ + α) / cos (θ + α) = 1

using tan θ = sin θ/cos θ we get,

⟹ tan (θ + α) = 1

⟹ tan (θ + α) = tan 45°

[ tan 45° = 1 ]

On comparing both sides we get;

⟹ θ + α = 45°

⟹ θ = 45° + (- α)

Again applying tan on both sides we get,

⟹ tan θ = tan [ 45° + ( - α) ]

Using tan (A + B) = (tan A + tan B) / 1 - tan A tan B in RHS we get,

 \\  \implies \sf \tan \theta =  \frac{tan \: 45 ^{ \circ}  + tan  \: ( -\alpha)}{1 -  \tan 45 ^{ \circ}  \tan \: (- \alpha) }  \\  \\  \\\implies \sf \tan \theta = \frac{1 -  \tan \:  \alpha  }{1 - (1)(- \tan \:  \alpha ) } \:\:\:\:\: \{ \tan ( - \theta) = - \tan \theta\}  \\  \\  \\ \implies \sf \tan \theta = \frac{1 -  \tan \:  \alpha  }{1 +  \tan \:  \alpha  }   \\

Hence, Proved.


BrainlyIAS: Perfection on peaks ♥
BrainlyIAS: Small error Tan (a-b) = (Tan a - Tan b)/(1 + Tan a * Tan b)
Answered by DARLO20
111

Gɪɴ :

\red\checkmark\:\:\bf{\sin\:(\theta\:+\:\alpha)\:=\:\cos\:(\theta\:+\:\alpha)\:} \\

T Pʀ :

  • \sf{\tan\theta\:=\:\dfrac{1\:+\:\tan\alpha}{1\:-\:\tan\alpha}} \\

Pʀғ :

Gɪᴠᴇɴ ᴛʜᴀᴛ,

\sf{\sin\:(\theta\:+\:\alpha)\:=\:\cos\:(\theta\:+\:\alpha)\:} \\

\sf{\dfrac{\sin\:(\theta\:+\:\alpha)}{\cos\:(\theta\:+\:\alpha)}\:=\:1\:} \\

\sf{\tan\:(\theta\:+\:\alpha)\:=\:1\:} \\

\sf{\tan\:(\theta\:+\:\alpha)\:=\:\tan{45^{\circ}}\:} \\

\bf{\theta\:+\:\alpha\:=\:45^{\circ}\:} \\

\sf{\theta\:=\:45^{\circ}\:-\:\alpha} \\

↝ Using tan function on both side,

\sf{\tan\theta\:=\:\tan{45^{\circ}\:-\:\alpha}} \\

↝ Using the below relation,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{tan\:(\theta\:-\:\beta)\:=\:\dfrac{tan\theta\:-tan\beta}{1\:+\:tan\theta\:tan\beta}\:}}}}}} \\

:\implies\:\:\sf{\tan\theta\:=\:\dfrac{\tan{45^{\circ}}\:-\:\tan\alpha}{1\:+\:\tan{45^{\circ}}\:\tan\alpha}\:} \\

:\implies\:\:\sf{\tan\theta\:=\:\dfrac{1\:-\:\tan\alpha}{1\:+\:(1\times{\tan\alpha})}\:} \\

:\implies\:\:{\underline{\boxed{\bf{\pink{\tan\theta\:=\:\dfrac{1\:-\:\tan\alpha}{1\:+\:\tan\alpha}}}}}}\:(Hence\:Proved) \\


BrainlyIAS: Latex errors :-) ♥
Similar questions