Math, asked by mohankhan22072036, 1 year ago

If sin theta - cos theta = 0, then the value of sin4 theta + cos4 theta is:
(a) 1
(b) _3
(c) _1
(d) 1​

Answers

Answered by Tinuarjun
3

Answer:

given that

sinø-cosø=0

sinø= cosø

ø = 45°

sin4ø + cos 4ø

= sin180° + cos 180°

= 0 + (-1)

= -1

Answered by harendrachoubay
1

The required "option c) - 1" is correct.

Step-by-step explanation:

We have,

\sin \theta-\cos \theta = 0

To find, the value of \sin^4 \theta+\cos^4 \theta = ?

\sin^4 \theta+\cos^4 \theta

= (\sin^2 \theta)^2+(\cos^2 \theta)^2

Using the algebraic identity,

(a+b)^{2}=a^{2}+b^{2}+2ab

a^{2}+b^{2}=(a+b)^{2}-2ab

= (\sin^2 \theta+\cos^2 \theta)^2-2\sin^2 \theta.\cos^2 \theta

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta = 1

= 1 - 2 = - 1

Thus, the required "option c) - 1" is correct.

Similar questions