if sin theta +cos theta=1/√2 then find the value of 4sin theta cos theta
Answers
Answered by
0
Answer:
is 1 the answer is one hope it is useful
Answered by
1
Step-by-step explanation:
Given :-
Sin θ + Cos θ = 1/√2
To find :-
Find the value of 4 Sin θ Cos θ ?
Solution :-
Given that :
Sin θ + Cos θ = 1/√2 -------------------(1)
On squaring both sides then
=> (Sin θ + Cos θ)² = (1/√2)²
=> Sin² θ + 2 Sin θ Cos θ + Cos² θ = 1/2
Since (a+b)² = a²+2ab+b²
Where a = Sin θ , b = Cos θ
=> (Sin² θ + Cos² θ) + 2 Sin θ Cos θ = 1/2
We know that Sin² A + Cos² A = 1
=> 1 + 2 Sin θ Cos θ = 1/2
=> 2 Sin θ Cos θ = (1/2) - 1
=> 2 Sin θ Cos θ = (1-2)/2
=> 2 Sin θ Cos θ = -1/2
On multiplying with 2 both sides then
=> 2 × 2 Sin θ Cos θ = -1/2 × 2
=> 4 Sin θ Cos θ = -2/2
=> 4 Sin θ Cos θ = -1
Answer:-
The value of 4 Sin θ Cos θ for the given problem is -1
Used formulae:-
- (a+b)² = a²+2ab+b²
- Sin² A + Cos² A = 1
Similar questions