Math, asked by prathemesh7811, 1 year ago

If sin theta +cos theta =1 then find the general value of theta

Answers

Answered by sprao534
17

Please see the attachment

Attachments:
Answered by guptasingh4564
7

The value of \theta[\tex] is [tex]\frac{n\pi}{2}

Step-by-step explanation:

Given,

sin\theta +cos\theta=1 the  find the general value of \theta=?

sin\theta +cos\theta=1

(sin\theta +cos\theta)^{2} =1^{2} by squaring both sides.

sin^{2} \theta+cos^{2} \theta+2.sin\theta.cos\theta=1

1+sin2\theta=1 (∵  sin^{2} \theta+cos^{2} \theta=1 )

sin2\theta=0

If  sin2\theta=0  then,

2\theta=n\pi

\theta=\frac{n\pi}{2} where n∈Z[\tex]</p><p><strong>So, The value of [tex]\theta is \frac{n\pi}{2}

Similar questions