If sin theta + cos theta = √2 ,then evaluate : tan theta + cot theta
Answers
Answered by
358
squaring first equatio
sin^2(a)+cos^2(a) +2sin( a) cos( a)=2
1+2sin(a)cos(a)=2
2sin(a)cos(a)=1
sin(a)cos(a)=1/2
tan a+cot a=sin a/cos a +cos a/sin a
=sin ^2 a +cos ^2 a/sin a cos a
=1/(1/2)
=2
sin^2(a)+cos^2(a) +2sin( a) cos( a)=2
1+2sin(a)cos(a)=2
2sin(a)cos(a)=1
sin(a)cos(a)=1/2
tan a+cot a=sin a/cos a +cos a/sin a
=sin ^2 a +cos ^2 a/sin a cos a
=1/(1/2)
=2
Ashisha9:
thanks☺️
Answered by
35
Answer:
2
Step-by-step explanation:
First, lets square the given equation to remove the root.
[sina +cosa]^2 =2
sin^2A + cos^2A + 2sinAcosA =2
1 +2sinAcosA=2 [sin^2A+cos^2A=1]
2sinAcosA=2-1
sinAcosA=1/2 [eqn.1]
leave the given result here.Proceed with the other one
tanA+ cotA=sinA/cosA + cosA/sinA
next take the LCM
sin^2A +co^2A/sinAcosA [ eqn.2]
substitute eqn 1 in eqn 2
1/1/2=2
hence the value of tanA+cotA= 2
Similar questions