if sin theta + cos theta equals to 7 by 5 and sin theta into cos theta equals to 12 by 25 then find the values of sin theta and Cos theta
Answers
Answer:
sinA = 3/5 or 4/5
cosA = 4/5 or 3/5
Step-by-step explanation:
Let sinA be a and cosA.
Given,
sinA + cosA = 7 / 5
⇒ a + b = 7 / 5
sinA.cosA = 12 / 25
⇒ ab = ( 12 / 25 )
Square on both sides of a + b:
⇒ ( a + b )^2 = ( 7 / 5 )^2
⇒ a^2 + b^2 + 2ab = ( 7 / 5 )^2
⇒ a^2 + b^2 + 2(12/25) = (7/5)^2 { from above,ab=12/25}
⇒ a^2 + b^2 = (49/25) - 2(12/25)
⇒ a^2 + b^2 = (49-24)/25
⇒ a^2 + b^2 = (25/25)
Adding - 2ab both sides :
⇒ a^2 + b^2 - 2ab = (25/35) - 2(12/25)
⇒ ( a - b )^2 = (25/25) - (24/25)
⇒ a - b = 1 / 5 of - 1 / 5
now, a + b = 7 / 5
a - b = 1 / 5
2a = 8 / 5
a = 4 / 5
Thus,
a - 1 / 5 = b ⇒ 4/5 - 1/5 = b ⇒ 3/5 = b
Or if a - b = - 1 / 5
a + b = 7 / 5
2a = 6/5
a = 3/5
So, b = 4/5
Hence,
a = sinA = 3/5 or 4/5
b = cosA = 4/5 or 3/5
if sin θ + cos θ equals to 7/5 and sin θ.cos θ equals to 12/25 then find the values of sin θ and Cos θ .
- sin θ + cos θ = 7/5 ...........(1)
- sin θ .cos θ = 12/25 ..........(2)
- Value of sin θ and cos θ
We know,
★(sin θ - cos θ) = √[(sin θ + cos θ)²-4sin θ .cos θ]
Keep value by equ(1) and equ(2),
➩(sin θ - cos θ) = √[(7/5)²-4×(12/25)]
➩(sin θ - cos θ) = √[49/25 - 48/25]
➩(sin θ - cos θ) = √[(49-48)/25]
➩(sin θ - cos θ) = √(1/25)
➩(sin θ - cos θ) = 1/5 ...............(3)
Add equ(1) and equ(3),
➩ 2.sin θ = 7/5 + 1/5
➩ 2.sin θ = (7+1)/5
➩ 2.sin θ = 8/5
➩ sin θ = 8/(5×2)
➩ sin θ = 4/5
keep this value equ(3),
➩ (4/5) - cos θ = 1/5
➩ cos θ = 4/5 - 1/5
➩ cos θ = (4-1)/5
➩ cos θ = 3/5
- Value of sin θ = 4/5
- Value of cos θ = 3/5
Keep value of sin θ and cos θ in equ(1),
➩ (4/5) + (3/5) = 7/5
➩ (4+3)/5 = 7/5
➩ 7/5 = 7/5
L.H.S. = R.H.S.
Again,
Keep value of sin θ and cos θ in equ(2),
➩ (4/5).(3/5) = 12/25
➩ 12/25 = 12/25
LH.S=R.H.S
That's proved