Math, asked by deekshakh58, 9 months ago

if sin theta =cos theta find 3tan^2 theta +2sin^2 theta please answer I will mark it as brainliest....

Answers

Answered by RvChaudharY50
56

Sᴏʟᴜᴛɪᴏɴ :-

Given :-

→ sinA = cosA

→ (sinA/cosA) = 1

using formula , (sinA/cosA) = tanA in LHS, Now,

→ tanA = 1

Also , we know that tan45° = 1

Therefore,

→ tanA = tan45°

A = 45°

So,

3tan²A + 2sin²A

→ 3tan²45° + 2sin²45°

→ 3(1)² + 2(1/√2)²

→ 3*1 + 2*(1/2)

→ 3 + 1

4 (Ans.)


Anonymous: Good!
RvChaudharY50: Thanks Bro. ❤️
Answered by Anonymous
23
{ \huge{ \mathfrak{ \underline{ \underline{Question:-}}}}}

▪ If

{ \bold{ \red{ \sin(theta) = \cos(theta) }}}

find

{ \bold{ \red{3 { \tan(theta) }^{2} + 2 { \sin(theta) }^{2} }}}

{ \huge{ \underline{ \underline{ \mathfrak{Solution:-}}}}}

▪ let theta be equal to alpha (  α ) just for my convenience..

{ \bold { \underline{ \purple{Given-}}}}

{ \huge{ \bold{ \sin( \alpha ) = \cos( \alpha ) }}}

▪ Taking cos (  α ) to the L.H.S...

{ \huge{ \bold{ \implies{ \frac{ \sin( \alpha ) }{ \cos( \alpha ) } \: = 1}}}}

we know that ,

{ \boxed{ \bold{ \red{ \frac{ \sin( \alpha ) }{ \cos( \alpha ) } = \tan( \alpha ) }}}}

therefore,

{ \huge{ \bold{ \implies{ \tan( \alpha ) = 1}}}}

since, the tan value is equal to 1 ...only if the angle is 45°.....

{{ \bold{ \purple{ \tan( \alpha ) = \tan(45) }}}}

thus,

{ \boxed{ \bold{ \huge{ \implies{ \red{ \alpha = 45 \: \: }}}}}}

{ \bold{ \underline{ \purple{to \: find}}}}

{ \bold{3 { \tan( \alpha ) }^{2} + 2 { \sin( \alpha ) }^{2} }}

substituting the value of   α ....

{ \bold{ = 3 { \tan(45) }^{2} + 2 { \sin(45) }^{2} }}

{ \boxed{ \bold{ \red{ \tan(45) = 1 \: and \: \sin(45) = \frac{1}{ \sqrt{2} } }}}}

therefore,

{ \bold {= (3 \times ( {1})^{2}) + (2 \times ( { \frac{1}{ \sqrt{2} } )}^{2} )}}

{ \bold{ = (3 \times 1) + (2 \times \frac{1}{2}) }}

{ \bold{ = 3 + 1 = 4}}

hence,

{ \boxed{ \bold{ \pink{3 { \tan(theta) }^{2} + 2 { \sin(theta) }^{2} = 4}}}}

Anonymous: Great!
RvChaudharY50: Perfect. ❤️
Similar questions