If sin theta +cos theta= p and sec theta +cosec theta =q show that q [p square-1]=2p
Answers
Answered by
953
p=sinθ+cosθ and q=secθ+cosecθ
q(p²-1)
=(secθ+cosecθ)[(sinθ+cosθ)²-1]
=(1/cosθ+1/sinθ)(sin²θ+2sinθcosθ+cos²θ-1)
={(sinθ+cosθ)/sinθcosθ}(2sinθcosθ) [ Since, sin²θ+cos²θ=1]
=2(sinθ+cosθ)
=2p (Proved)
q(p²-1)
=(secθ+cosecθ)[(sinθ+cosθ)²-1]
=(1/cosθ+1/sinθ)(sin²θ+2sinθcosθ+cos²θ-1)
={(sinθ+cosθ)/sinθcosθ}(2sinθcosθ) [ Since, sin²θ+cos²θ=1]
=2(sinθ+cosθ)
=2p (Proved)
Answered by
221
Answer:
Step-by-step explanation:
Attachments:
Similar questions