Math, asked by Cupcake11, 1 year ago

if sin theta + cos theta =root 3 then prove that tan theta + cot thera = 1

Answers

Answered by presentmoment
1205

\bold{\tan \theta+\cot \theta=1}, If the value of  \bold{\sin \theta+\cos \theta=\sqrt{3}}

Given:

\sin \theta+\cos \theta=\sqrt{3}

To Prove:

\tan \theta+\cot \theta=1

Proof:

\sin \theta+\cos \theta=\sqrt{3}

Squaring of both sides, we get:

(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}

Using the formula (a+b)^{2}=a^{2}+b^{2}+2 a b

Applying formula in (\sin \theta+\cos \theta)^{2},

\begin{array}{l}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}

1+2sinθcosθ=3

2sinθcosθ=2  

sinθcosθ=1  ______(1)

The value of the \sin \theta+\cos \theta=\sqrt{3}

is sinθcosθ=1  

To prove:

tanθ+cotθ=1  

L.H.S  

tanθ+cotθ

Transforming the identity of tanθ  ; cotθ into \frac{\sin \theta}{\cos \theta} ; \frac{\cos \theta}{\sin \theta}

\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}

\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}

Substituting equation (1) we get  

\begin{array}{l}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1}} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}

tanθ+cotθ=1=R.H.S

∴L.H.S=R.H.S

Hence proved

∴If \bold{\sin \theta+\cos \theta=\sqrt{3}} then  \bold{\tan \theta+\cot \theta=1} .

Answered by moksh581
527

hope it's helpful for you

Attachments:
Similar questions