if sin theta + cos theta=root2 then evalute tan theta +cot theta
Answers
Answered by
2048
hello friends.....
here given ...
sin θ + cos θ = √2
we have to find
tanθ + cot θ =?
solution:-
sin θ + cos θ = √2
now square on both side
= ( sin θ + cos θ )² = √2²
= (sin² θ + cos² θ )+ 2 sin θ cos θ = 2
= 1+ 2sin θ cos θ = 2
=> sin θ cos θ = 1/2
now
tanθ + cot θ =sin θ/cos θ + cos θ/sin θ
=( sin² θ +cos² θ) / sin θ cos θ
= 1 / (1/2) = 2 answer
♦♦ hope it helps ♦♦
here given ...
sin θ + cos θ = √2
we have to find
tanθ + cot θ =?
solution:-
sin θ + cos θ = √2
now square on both side
= ( sin θ + cos θ )² = √2²
= (sin² θ + cos² θ )+ 2 sin θ cos θ = 2
= 1+ 2sin θ cos θ = 2
=> sin θ cos θ = 1/2
now
tanθ + cot θ =sin θ/cos θ + cos θ/sin θ
=( sin² θ +cos² θ) / sin θ cos θ
= 1 / (1/2) = 2 answer
♦♦ hope it helps ♦♦
Answered by
226
=nswer:
ACOORDING TO THE QUESTION,
we have to find tanФ+cosФ ,
now,we can square it both sides,so,( sinФ+cosФ)²=(√2)²
as, (a+b)²=a²+b²+2ab
now, it becomes (sin²Ф+cos²Ф)+2 sinФ cosФ=2
1+2sinФcosФ=2
sinФcosФ=1/2
now , we have to evaluate tanФ+cosФ
so, tanФ+cotФ as,tanФ=sin/cos and cosФ=cos/sin
= sin/cos + cos/sin
now, sin²Ф+cos²Ф/ sinФcosФ=1/1/2=2
hence,2 is the answer.
i hope it helps uh
Step-by-step explanation:
Similar questions