if sin theta + cos theta = x then find sin theta - cos theta
Answers
Answered by
7
Answer:
Sin θ + Cos θ = x
( Sin θ + Cos θ ) ² = x²
Sin² θ + Cos² θ + 2sin θ . cos 2 θ = x²
1 + 2Sin θ .Cos θ = x²
Sin θ × Cos θ = x² - 1 / 2 ------------(1)
Sin6 θ + Cos6 θ
= ( Sin² θ ) ³ + ( Cos² θ ) ³
= ( Sin² θ + Cos² θ ) [ ( Sin² θ ) ² + ( Cos² θ ) ² - Sin² θ .Cos² θ ) ]
= Sin⁴ θ + Cos⁴ θ - Sin² θ . Cos² θ
= ( Sin² θ + Cos² θ ) ² - 2Sin² θ . Cos² θ - Sin² θ . Cos² θ
= 1 - 3 Sin² θ . Cos² θ
= 1 - 3 ( x² - 1 / 2 ) ²
= 1 - 3 ( x² - 1 / 4 ) ²
= 4 - 3 ( x² - 1 ) ² / 4
Similar questions