Math, asked by pinkuuu48, 1 year ago

if sin theta is 3/5 and theta is an acute angle find the values of cos theta and tan theta.

Answers

Answered by Rashmi2003
37
Let theta be A
sin A= 3/5
Sin A=1/cos A
Cos A=1/sin A
=1/3/5
=5/3
Tan A=sin A/Cos A
=3/5/5/3
=1
Answered by wifilethbridge
37

Cos \theta = \frac{Base}{Hypotenuse}=\frac{4}{5}

Tan\theta = \frac{Perpendicular}{base}=\frac{3}{4}

Step-by-step explanation:

Sin \theta = \frac{3}{5}

Sin \theta = \frac{Perpendicular}{Hypotenuse}

On comparing

Perpendicular = 3

Hypotenuse = 5

Hypotenuse^2 = Perpendicular^2+Base^2

5^2 = 3^2 +Base^2

\sqrt{5^2-3^2}=Base

4=Base

Cos \theta = \frac{Base}{Hypotenuse}=\frac{4}{5}

Tan\theta = \frac{Perpendicular}{base}=\frac{3}{4}

#Learn more:

Given that tan theta = 5/12 and theta is acute angle , find sin theta and cos theta.

https://brainly.in/question/12578693

Similar questions