Math, asked by ganeshgk6244, 1 year ago

If sin theta is equal to 24/25 find tan theta+sec theta

Answers

Answered by Trusha11
39
pls mark this answer brainliest
Attachments:
Answered by boffeemadrid
27

Answer:

tan{\theta}+sec{\theta}=7.

Step-by-step explanation:

It is given that the value of sin{\theta} is {\frac{24}{25}}, that is

sin{\theta}=\frac{perpendicular}{Hypotenuse}=\frac{24}{25}

Now, using the Pythagoras theorem, we have

(25)^2=(24)^2+(Base)^2

625-576=(Base)^2

49=(Base)^2

7=Base

Now, tan{\theta}={\frac{Perpendicular}{Base}=\frac{24}{7}

And sec{\theta}=\frac{Hypotenuse}{Base}=\frac{25}{7}

thus, the value of tan{\theta}+sec{\theta} will be:

tan{\theta}+sec{\theta}=\frac{24}{7}+\frac{25}{7}

tan{\theta}+sec{\theta}=\frac{49}{7}

tan{\theta}+sec{\theta}=7.

Attachments:
Similar questions